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Preface

Data compression has been an enabling technology for the information revolution. As this revolution
has changed our lives, data compression has become a more and more ubiquitous, if often invisible,
presence. From smartphones, to digital television and movies, data compression is an integral part of
information technology and of our lives. This incorporation of compression into more and more of
our lives also points to a certain degree of maturation and stability of the technology. This maturity is
reflected in the fact that there are fewer differences between each edition of this book. In the second
edition we had added new techniques that had been developed since the first edition of this book came
out. In the third edition we added a chapter on audio compression, a topic that had not been adequately
covered in the second edition. The fourth edition expanded the coverage of wavelets. In this edition
we have added details of standards that have come out since the last edition such as High Efficiency
Video Coding and new standards from the JPEG committee. We have added a description of Grammar
based codes which might become more important in the coming years and as always we have filled in
details left out from the previous editions. I have also indulged my latest interests by including a few
applications of data compression algorithms to bioinformatics.

Though the percentage growth of this edition is less than that of previous editions it is still growth
and it has yet again enlarged the book. Despite its expanded coverage, the intent remains the same:
to provide an introduction to the art or science of data compression. There is a tutorial description
of most of the popular compression techniques followed by a description of how these techniques are
used for image, speech, text, audio, and video compression. We have attempted to make the chapters on
techniques as self contained as possible. This is of course not completely possible for the application
chapters which rely on multiple techniques presented in previous chapters, but here too we have tried to
make sure that the dependence does not interrupt the explanation. One hopes the size of the book will
not be intimidating and once you open the book and begin reading a particular section we hope you will
find the content easily accessible. If some material is not clear please write to me at ksayood@unl.edu
with specific questions and I will try and help (homework problems and projects are of course your
responsibility).

AUDIENCE
If you are designing hardware or software implementations of compression algorithms, or need to
interact with individuals engaged in such design, or are involved in development of multimedia appli-
cations and have some background in either electrical or computer engineering, or computer science,
this book should be useful to you. We have included a large number of examples to aid in self-study.
We have also included discussion of various multimedia standards. The intent here is not to provide all
the details that may be required to implement a standard but to provide information that will help you
follow and understand the standards documents. The final authority is always the standards document.

xvii
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COURSE USE
The impetus for writing this book came from the need for a self-contained book that could be used
at the senior/graduate level for a course in data compression in either electrical engineering, computer
engineering, or computer science departments. There are problems and project ideas after most of the
chapters. A solutions manual is available from the publisher. Also at http://datacompression.unl.edu
we provide links to various course homepages, which can be a valuable source of project ideas and
support material.

The material in this book is too much for a one semester course. However, with judicious use of
the starred sections, this book can be tailored to fit a number of compression courses that empha-
size various aspects of compression. If the course emphasis is on lossless compression, the instructor
could cover most of the sections in the first seven chapters. Then, to give a taste of lossy compression,
the instructor could cover Sections 9.1–9.5 of Chapter 9, followed by Chapter 13 and its description
of JPEG, and Chapter 19, which describes video compression approaches used in multimedia com-
munications. If the class interest is more attuned to audio compression, then instead of Chapters 13
and 19, the instructor could cover Chapters 14 and 17. If the latter option is taken, depending on the
background of the students in the class, Chapter 12 may be assigned as background reading. If the
emphasis is to be on lossy compression, the instructor could cover Chapter 2, the first two sections
of Chapter 3, Sections 4.4 and 4.6 of Chapter 4 (with a cursory overview of Sections 4.2 and 4.3),
Chapter 8, selected parts of Chapter 9, and Chapter 10 through 16. At this point depending on the time
available and the interests of the instructor and the students portions of the remaining three chapters
can be covered. I have always found it useful to assign a term project in which the students can follow
their own interests as a means of covering material that is not covered in class but is of interest to the
student.

APPROACH
In this book, we cover both lossless and lossy compression techniques with applications to image,
speech, text, audio, and video compression. The various lossless and lossy coding techniques are in-
troduced with just enough theory to tie things together. The necessary theory is introduced just before
we need it. Therefore, there are three mathematical preliminaries chapters. In each of these chapters,
we present the mathematical material needed to understand and appreciate the techniques that follow.

Although this book is an introductory text, the word introduction may have a different meaning
for different audiences. We have tried to accommodate the needs of different audiences by taking a
dual-track approach. Wherever we felt there was material that could enhance the understanding of the
subject being discussed but could still be skipped without seriously hindering your understanding of the
technique, we marked those sections with a star (�). If you are primarily interested in understanding
how the various techniques function, especially if you are using this book for self-study, we recommend
you skip the starred sections, at least in a first reading. Readers who require a slightly more theoretical
approach should use the starred sections. Except for the starred sections, we have tried to keep the
mathematics to a minimum.

http://datacompression.unl.edu
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LEARNING FROM THIS BOOK
I have found that it is easier for me to understand things if I can see examples. Therefore, I have relied
heavily on examples to explain concepts. You may find it useful to spend more time with the examples
if you have difficulty with some of the concepts.

Compression is still largely an art and to gain proficiency in an art we need to get a “feel” for
the process. We have included software implementations for most of the techniques discussed in
this book, along with a large number of data sets. The software and data sets can be obtained from
ftp://ftp.mkp.com/pub/Sayood/ or from datacompression.unl.edu. The programs are written in C and
have been tested on a number of platforms. The programs should run under most flavors of UNIX
machines and, with some slight modifications, under other operating systems as well. More detailed
information is contained in the README file in the pub/Sayood directory.

You are strongly encouraged to use and modify these programs to work with your favorite data in
order to understand some of the issues involved in compression. A useful and achievable goal should
be the development of your own compression package by the time you have worked through this book.
This would also be a good way to learn the trade-offs involved in different approaches. We have tried
to give comparisons of techniques wherever possible; however, different types of data have their own
idiosyncrasies. The best way to know which scheme to use in any given situation is to try them.

CONTENT AND ORGANIZATION
The organization of the chapters is as follows: We introduce the mathematical preliminaries neces-
sary for understanding lossless compression in Chapter 2; Chapters 3 and 4 are devoted to coding
algorithms, including Huffman coding, arithmetic coding, Golomb–Rice codes, and Tunstall codes.
Chapters 5 and 6 describe many of the popular lossless compression schemes along with their appli-
cations. The schemes include LZW, ppm, BWT, and DMC, among others. In Chapter 7 we describe a
number of lossless image compression algorithms and their applications in a number of international
standards. The standards include the JBIG standards and various facsimile standards.

Chapter 8 is devoted to providing the mathematical preliminaries for lossy compression. Quantiza-
tion is at the heart of most lossy compression schemes. Chapters 9 and 10 are devoted to the study of
quantization. Chapter 9 deals with scalar quantization, and Chapter 10 deals with vector quantization.
Chapter 11 deals with differential encoding techniques, in particular differential pulse code modulation
(DPCM) and delta modulation. Included in this chapter is a discussion of the CCITT G.726 standard.

Chapter 12 is our third mathematical preliminaries chapter. The goal of this chapter is to provide
the mathematical foundation necessary to understand some aspects of the transform, subband, and
wavelet-based techniques that are described in the next four chapters. As in the case of the previous
mathematical preliminaries chapters, not all material covered is necessary for everyone. We describe
the JPEG standard in Chapter 13, the CCITT G.722 international standard in Chapter 14, and EZW,
SPIHT, and JPEG 2000 in Chapter 16.

Chapter 17 is devoted to audio compression. We describe the various MPEG audio compression
schemes in this chapter including the scheme popularly known as mp3.

Chapter 18 covers techniques in which the data to be compressed are analyzed, and a model for
the generation of the data is transmitted to the receiver. The receiver uses this model to synthesize
the data. These analysis/synthesis and analysis by synthesis schemes include linear predictive schemes
used for low-rate speech coding and the fractal compression technique. We describe the federal govern-

ftp://ftp.mkp.com/pub/Sayood/
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ment LPC-10 standard. Code-excited linear prediction (CELP) is a popular example of an analysis by
synthesis scheme. We also discuss three CELP-based standards, the federal standard 1016, the G.728
international standard, and the wideband speech compression standard G.722.2 as well as a the 2.4 kbps
mixed excitation linear prediction (MELP) technique. We have also included an introduction to three
speech compression standards currently in use for speech compression for Internet applications: the
Internet Low Bandwidth Coder, SILK, and ITU-T G.729 standard.

Chapter 19 deals with video coding. We describe popular video coding techniques via descrip-
tion of various international standards, including the High Efficiency Video Coding (HEVC) or H.265
standard.

A PERSONAL VIEW
For me, data compression is more than a manipulation of numbers; it is the process of discovering the
information that is contained in the data. Sometimes the information is clear and evident, sometimes it
is hidden or occult. (My lab is called the Occult Information Lab (OIL) which from time to time has lead
to some misunderstandings.) The process of discovering this information is a source of joy. Encoding
this information requires modeling the structures in the data. To see this in a very different context
consider the following brief poems from different centuries, different cultures, written in different
languages.

Indeed, indeed, repentance oft before
I swore but was I sober when I swore?
And then came Spring and rose in hand
my threadbare penitence a-pieces tore.

Omar Khayyam, Persia, 1048–1131. Translated by Edward Fitzgerald

Even in Kyoto
hearing the cuckoo’s cry
I long for Kyoto.

Matsuo Basho, Japan, 1644–1694. Translated by Robert Haas

To explain these few lines would take volumes. Despite being from different centuries and cultures,
they tap into a common human experience so that in our mind’s eye, we can reconstruct what the poet
was trying to say. To understand the words we need a model of reality that is close to that of the poet.
The genius of the poet lies in identifying a model of reality that is so much a part of our humanity that
centuries later and in widely diverse cultures, these few words can evoke volumes.

Data compression is much more limited in its aspirations, and it may be presumptuous to mention
it in the same breath as poetry. But there is much that is similar to both endeavors. Data compression
involves identifying models for the many different types of structures that exist in different types of
data and then using these models, perhaps along with the perceptual framework in which these data
will be used, to obtain a compact representation of the data. These structures can be in the form of
patterns that we can recognize simply by plotting the data, or they might be structures that require a
more abstract approach to comprehend. Often, it is not the data but the structure within the data that
contains the information, and the development of data compression involves the discovery of these
structures.
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In The Long Dark Teatime of the Soul by Douglas Adams, the protagonist finds that he can enter
Valhalla (a rather shoddy one) if he tilts his head in a certain way. Appreciating the structures that
exist in data sometimes require us to tilt our heads in a certain way. There are an infinite number of
ways we can tilt our head and, in order not to get a pain in the neck (carrying our analogy to absurd
limits), it would be nice to know some of the ways that will generally lead to a profitable result. One
of the objectives of this book is to provide you with a frame of reference that can be used for further
exploration. I hope this exploration will provide as much enjoyment for you as it has given to me.

ACKNOWLEDGMENTS
It has been a lot of fun writing and revising this book. My task has been made considerably easier and
the end product considerably better because of the help I have received. Acknowledging that help is
itself a pleasure.
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Langdon from the University of California at Santa Cruz, Debra Lelewer from California Polytechnic
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the new material in the second edition. Chloeann Nelson, along with trying to stop me from splitting
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benefitted from the critique of Rob Maher, now at Montana State, who generously gave of his time to
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of Mark Fowler from SUNY Binghamton and Pierre Jouvelet from the Ecole Superieure des Mines de
Paris. The aforementioned wavelet material was added because Mark thought that it should be there.
Pierre’s detailed and extensive review was extremely helpful. The chapter on Wavelet Image Compres-
sion benefitted from the review of Mike Marcellin of the University of Arizona. Mike agreed to look
at the chapter while in the midst of end-of-semester crunch, which is an act of friendship those in the
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Hernandez, Dirk vom Stein, Christopher A. Larrieu, Ren Yih Wu, Humberto D’Ochoa, Roderick Mills,
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to the book. I am also grateful to the various instructors who have sent me their critiques. In particular
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had the thankless task of dealing with my never-ending excuses. Punithavathy Govindaradjane was
responsible for trying to bring the project to a timely conclusion.

Over the years a number of my students have had a direct impact on this book. Most of the examples
in this book were generated in a lab set up by Andy Hadenfeldt. James Nau helped me extricate myself
out of numerous software puddles giving freely of his time. In my times of panic, he has always been
just an email or voice mail away. Zhao Li wrote the solutions to the problems in the second edition.
Sam Way helped me out with several of the examples in the fourth edition and Dave Russell provided
me with helpful criticism after trying to teach out of this book. Ufuk Nalbantoğlu continues to teach
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1
CHAPTER

INTRODUCTION

Peta, exa, zetta, yotta,1 the number of bytes of data, stored, processed, and transmitted keeps soar-
ing, and in the process, keeps transforming our world. This transformation includes the ever-present,
ever-growing Internet; the explosive development of mobile communications; and the ever-increasing
importance of video communication. Data compression is one of the enabling technologies for each of
these aspects of the multimedia revolution. It would not be practical to put images, let alone audio and
video, on websites if it were not for data compression algorithms. Cellular phones would not be able to
provide communication with increasing clarity were it not for compression. The advent of digital TV
would not be possible without compression. Data compression, which for a long time was the domain
of a relatively small group of engineers and scientists, is now ubiquitous. Make a call on your cell
phone, and you are using compression. Surf on the Internet, and you are using (or wasting) your time
with assistance from compression. Listen to music or watch a movie, and you are being entertained
courtesy of compression.

Data compression is the art or science of representing information in a compact form. We create
these compact representations by identifying and using structures that exist in the data. Data can be
characters in a text file, numbers that are samples of speech or image waveforms, or sequences of num-
bers that are generated by other processes. The reason we need data compression is that more and more
of the information that we generate and use is in digital form—consisting of numbers represented by
bytes of data. And the number of bytes required to represent multimedia data can be huge. For example,
in order to digitally represent 1 second of video without compression (using the CCIR 601 format de-
scribed in Chapter 19), we need more than 20 megabytes, or 160 megabits. If we consider the number
of seconds in a movie, we can easily see why we would need compression. To represent 2 minutes of
uncompressed CD-quality music (44,100 samples per second, 16 bits per sample) requires more than
84 million bits. Downloading music from a website at these rates would take a long time.

As human activity has a greater and greater impact on our environment, there is an ever-increasing
need for more information about our environment, how it functions, and what we are doing to it. Various
space agencies from around the world, including the European Space Agency (ESA), the National
Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the Japan
Aerospace Exploration Agency (JAXA), are collaborating on a program to monitor global change
that will generate half a terabyte of data per day when they are fully operational. New sequencing
technologies are resulting in ever increasing size of databases containing genomic information while
new medical scanning applications can result in the generation of petabytes of data.

Given the explosive growth of data that needs to be transmitted and stored, why not focus on
developing better transmission and storage technologies? This is happening, but it is not enough. There
have been significant advances that permit larger and larger volumes of information to be stored and

1Mega: 106, giga: 109, tera: 1012, peta: 1015, exa: 1018, zetta: 1021, yotta: 1024.

Introduction to Data Compression. DOI: 10.1016/B978-0-12-809474-7.00001-X
Copyright © 2018 Elsevier Inc. All rights reserved.
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transmitted without using compression. However, while it is true that both storage and transmission
capacities are steadily increasing with new technological innovations, as a corollary to Parkinson’s
First Law,2 it seems that the need for mass storage and transmission increases at least twice as fast
as storage and transmission capacities improve. Then there are situations in which capacity has not
increased significantly. For example, the amount of information we can transmit over the airwaves will
always be limited by the characteristics of the atmosphere.

An early example of data compression is Morse code, developed by Samuel Morse in the mid-19th
century. Letters sent by telegraph are encoded with dots and dashes. Morse noticed that certain letters
occurred more often than others. In order to reduce the average time required to send a message, he
assigned shorter sequences to letters that occur more frequently, such as e (·) and a (·−), and longer
sequences to letters that occur less frequently, such as q (− − ·−) and j (·− − −). This idea of using
shorter codes for more frequently occurring characters is used in Huffman coding, which we will
describe in Chapter 3.

Where Morse code uses the frequency of occurrence of single characters, a widely used form of
Braille code, which was also developed in the mid-19th century, uses the frequency of occurrence of
words to provide compression [1]. In Braille coding, 2 × 3 arrays of dots are used to represent text.
Different letters can be represented depending on whether the dots are raised or flat. In Grade 1 Braille,
each array of six dots represents a single character. However, given six dots with two positions for
each dot, we can obtain 26, or 64, different combinations. If we use 26 of these for the different letters,
we have 38 combinations left. In Grade 2 Braille, some of these leftover combinations are used to
represent words that occur frequently, such as “and” and “for.” One of the combinations is used as a
special symbol indicating that the symbol that follows is a word and not a character, thus allowing
a large number of words to be represented by two arrays of dots. These modifications, along with
contractions of some of the words, result in an average reduction in space, or compression, of about
20% [1].

Statistical structure is being used to provide compression in these examples, but that is not the only
kind of structure that exists in the data. There are many other kinds of structures existing in data of
different types that can be exploited for compression. Consider speech. When we speak, the physi-
cal construction of our voice box dictates the kinds of sounds that we can produce. The mechanics
of speech production impose a structure on speech. Therefore, instead of transmitting the speech it-
self, we could send information about the conformation of the voice box, which could be used by the
receiver to synthesize the speech. An adequate amount of information about the conformation of the
voice box can be represented much more compactly than the numbers that are the sampled values of
speech. Therefore, we get compression. This compression approach is being used currently in a num-
ber of applications, including transmission of speech over cell phones and the synthetic voice in toys
that speak. An early version of this compression approach, called the vocoder (voice coder), was devel-
oped by Homer Dudley at Bell Laboratories in 1936. The vocoder was demonstrated at the New York
World’s Fair in 1939, where it was a major attraction. We will revisit the vocoder and this approach to
compression of speech in Chapter 18.

These are only a few of the many different types of structures that can be used to obtain compres-
sion. The structure in the data is not the only thing that can be exploited to obtain compression. We can

2Parkinson’s First Law: “Work expands so as to fill the time available,” in Parkinson’s Law and Other Studies in Administration,
by Cyril Northcote Parkinson, Ballantine Books, New York, 1957.
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FIGURE 1.1

Compression and reconstruction.

also make use of the characteristics of the user of the data. Many times, for example, when transmit-
ting or storing speech and images, the data are intended to be perceived by a human, and humans have
limited perceptual abilities. For example, we cannot hear the very high frequency sounds that dogs can
hear. If something is represented in the data that cannot be perceived by the user, is there any point in
preserving that information? The answer is often “no.” Therefore, we can make use of the perceptual
limitations of humans to obtain compression by discarding irrelevant information. This approach is
used in a number of compression schemes that we will visit in Chapters 13, 14, and 17.

Before we embark on our study of data compression techniques, let’s take a general look at the area
and define some of the key terms and concepts we will be using in the rest of the book.

1.1 COMPRESSION TECHNIQUES
When we speak of a compression technique or compression algorithm,3 we are actually referring to two
algorithms. There is the compression algorithm that takes an input X and generates a representation Xc

that requires fewer bits, and there is a reconstruction algorithm that operates on the compressed repre-
sentation Xc to generate the reconstruction Y . These operations are shown schematically in Fig. 1.1.

3The word algorithm comes from the name of an early 9th-century Persian mathematician, Muhammad Ibn Musa Al-Khwarizmi.
He was a scholar in the House of Wisdom in Baghdad during the Abbasid Caliphate where he wrote a treatise entitled The
Compendious Book on Calculation by al-jabr and al-muqabala, in which he explored (among other things) the solution of various
linear and quadratic equations via rules or an “algorithm.” This approach became known as the method of Al-Khwarizmi. The
name was changed to algoritni in Latin, from which we get the word algorithm. The name of the treatise also gave us the word
algebra [2]. And his Book of Numbers introduced the positional numbering system to Europe three hundred years after his
death.



4 CHAPTER 1 INTRODUCTION

We will follow convention and refer to both the compression and reconstruction algorithms together to
mean the compression algorithm.

Based on the requirements of reconstruction, data compression schemes can be divided into two
broad classes: lossless compression schemes, in which Y is identical to X , and lossy compression
schemes, which generally provide much higher compression than lossless compression but allow Y to
be different from X .

1.1.1 LOSSLESS COMPRESSION
Lossless compression techniques, as their name implies, involve no loss of information. If data have
been losslessly compressed, the original data can be recovered exactly from the compressed data.
Lossless compression is generally used for applications that cannot tolerate any difference between the
original and reconstructed data.

Text compression is an important area for lossless compression. It is very important that the recon-
struction is identical to the original text, as very small differences can result in statements with very
different meanings. Consider the sentences “Do not send money” and “Do now send money.” A similar
argument holds for computer files and for certain types of data such as bank records.

If data of any kind are to be processed or “enhanced” later to yield more information, it is important
that the integrity be preserved. For example, suppose we compressed a radiological image in a lossy
fashion; and the difference between the reconstruction Y and the original X was visually undetectable.
If this image was later enhanced, the previously undetectable differences may cause the appearance
of artifacts that could seriously mislead the radiologist. Because the price for this kind of mishap may
be a human life, it makes sense to be very careful about using a compression scheme that generates a
reconstruction that is different from the original.

Data obtained from satellites often are processed later to obtain different numerical indicators of
vegetation, deforestation, and so on. If the reconstructed data are not identical to the original data,
processing may result in “enhancement” of the differences. It may not be possible to go back and
obtain the same data over again. Therefore, it is not advisable to allow for any differences to appear in
the compression process.

There are many situations that require compression where we want the reconstruction to be identical
to the original. There are also a number of situations in which it is possible to relax this requirement in
order to get more compression. In these situations, we look to lossy compression techniques.

1.1.2 LOSSY COMPRESSION
Lossy compression techniques involve some loss of information, and data that have been compressed
using lossy techniques generally cannot be recovered or reconstructed exactly. In return for accepting
this distortion in the reconstruction, we can generally obtain much higher compression ratios than is
possible with lossless compression.

In many applications, this lack of exact reconstruction is not a problem. For example, when storing
or transmitting speech, the exact value of each sample of speech is not necessary. Depending on the
quality required of the reconstructed speech, varying amounts of loss of information about the value of
each sample can be tolerated. If the quality of the reconstructed speech is to be similar to that heard on
the telephone, a significant loss of information can be tolerated. However, if the reconstructed speech
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needs to be of the quality heard on a compact disc, the amount of information loss that can be tolerated
is much lower.

Similarly, when viewing a reconstruction of a video sequence, the fact that the reconstruction is
different from the original is generally not important as long as the differences do not result in annoying
artifacts. Thus, video is generally compressed using lossy compression.

Once we have developed a data compression scheme, we need to be able to measure its perfor-
mance. Because of the number of different areas of application, different terms have been developed to
describe and measure the performance.

1.1.3 MEASURES OF PERFORMANCE
A compression algorithm can be evaluated in a number of different ways. We could measure the relative
complexity of the algorithm, the memory required to implement the algorithm, how fast the algorithm
performs on a given machine, the amount of compression, and how closely the reconstruction resem-
bles the original. In this book we will mainly be concerned with the last two criteria. Let us take each
one in turn.

A very logical way of measuring how well a compression algorithm compresses a given set of data
is to look at the ratio of the number of bits required to represent the data before compression to the
number of bits required to represent the data after compression. This ratio is called the compression
ratio. Suppose storing an image made up of a square array of 256 × 256 pixels requires 65,536 bytes.
The image is compressed and the compressed version requires 16,384 bytes. We would say that the
compression ratio is 4:1. We can also represent the compression ratio by expressing the reduction in
the amount of data required as a percentage of the size of the original data. In this particular example,
the compression ratio calculated in this manner would be 75%.

Another way of reporting compression performance is to provide the average number of bits re-
quired to represent a single sample. This is generally referred to as the rate. For example, in the case
of the compressed image described above, the average number of bits per pixel in the compressed
representation is 2. Thus, we would say that the rate is 2 bits per pixel.

In lossy compression, the reconstruction differs from the original data. Therefore, in order to de-
termine the efficiency of a compression algorithm, we have to have some way of quantifying the
difference. The difference between the original and the reconstruction is often called the distortion.
(We will describe several measures of distortion in Chapter 8.) Lossy techniques are generally used
for the compression of data that originate as analog signals, such as speech and video. In compression
of speech and video, the final arbiter of quality is human. Because human responses are difficult to
model mathematically, many approximate measures of distortion are used to determine the quality of
the reconstructed waveforms. We will discuss this topic in more detail in Chapter 8.

Other terms that are also used when talking about differences between the reconstruction and
the original are fidelity and quality. When we say that the fidelity or quality of a reconstruction is
high, we mean that the difference between the reconstruction and the original is small. Whether this
difference is a mathematical difference or a perceptual difference should be evident from the con-
text.
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1.2 MODELING AND CODING
While reconstruction requirements may force the decision of whether a compression scheme is to be
lossy or lossless, the exact compression scheme we use will depend on a number of different factors.
Some of the most important factors are the characteristics of the data that need to be compressed.
A compression technique that will work well for the compression of text may not work well for com-
pressing images. Each application presents a different set of challenges.

There is a saying attributed to a whole slew of people from Mark Twain to Warren Buffet, “If the
only tool you have is a hammer, you approach every problem as if it were a nail.” Our intention in
this book is to provide you with a large number of tools that you can use to solve a particular data
compression problem. It should be remembered that data compression, if it is a science at all, is an
experimental science. The approach that works best for a particular application will depend to a large
extent on the redundancies inherent in the data.

The development of data compression algorithms for a variety of data can be divided into two
phases. The first phase is usually referred to as modeling. In this phase, we try to extract information
about any redundancy that exists in the data and describe the redundancy in the form of a model. The
second phase is called coding. A description of the model and a “description” of how the data differ
from the model are encoded, generally using a binary alphabet. The difference between the data and
the model is often referred to as the residual. In the following three examples, we will look at three
different ways that data can be modeled. We will then use the model to obtain compression.

Example 1.2.1. Consider the following sequence of numbers {x1, x2, x3, . . . }:
9 11 11 11 14 13 15 17 16 17 20 21

If we were to transmit or store the binary representations of these numbers, we would need to use 5 bits
per sample. However, by exploiting the structure in the data, we can represent the sequence using
fewer bits. If we plot these data as shown in Fig. 1.2, we see that the data seem to fall on a straight line.
A model for the data could, therefore, be a straight line given by the equation

x̂n = n + 8 n = 1,2, . . .

The structure in this particular sequence of numbers can be characterized by an equation. Thus,
x̂1 = 9, while x1 = 9, x̂2 = 10, while x2 = 11, and so on. To make use of this structure, let’s examine
the difference between the data and the model. The difference (or residual) is given by the sequence

en = xn − x̂n : 0 1 0 − 1 1 − 1 0 1 − 1 − 1 1 1

The residual sequence consists of only three numbers {−1,0,1}. If we assign a code of 00 to −1,
a code of 01 to 0, and a code of 10 to 1, we need to use 2 bits to represent each element of the residual
sequence. Therefore, we can obtain compression by transmitting or storing the parameters of the model
and the residual sequence. The encoding can be exact if the required compression is to be lossless, or
approximate if the compression can be lossy. �

The type of structure or redundancy that existed in these data follows a simple law. Once we rec-
ognize this law, we can make use of the structure to predict the value of each element in the sequence
and then encode the residual. Structure of this type is only one of many types of structure.
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FIGURE 1.2

A sequence of data values.

FIGURE 1.3

A sequence of data values.

Example 1.2.2. Consider the following sequence of numbers:

27 28 29 28 26 27 29 28 30 32 34 36 38

The sequence is plotted in Fig. 1.3.
The sequence does not seem to follow a simple law as in the previous case. However, each value in

this sequence is close to the previous value. Suppose we send the first value, then in place of subsequent
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Table 1.1 A Code With Code-
words of Varying Length

a 1

· 001

b 01100

f 0100

n 0111

r 000

w 01101

y 0101

values we send the difference between it and the previous value. The sequence of transmitted values
would be

27 1 1 −1 −2 1 2 −1 2 2 2 2 2

Like the previous example, the number of distinct values has been reduced. Fewer bits are required
to represent each number, and compression is achieved. The decoder adds each received value to the
previous decoded value to obtain the reconstruction corresponding to the received value. Techniques
that use the past values of a sequence to predict the current value and then encode the error in prediction,
or residual, are called predictive coding schemes. We will discuss lossless predictive compression
schemes in Chapter 7 and lossy predictive coding schemes in Chapter 11.

Assuming both encoder and decoder know the model being used, we would still have to send the
value of the first element of the sequence. �

A very different type of redundancy is statistical in nature. Often we will encounter sources that
generate some symbols more often than others. In these situations, it will be advantageous to assign
binary codes of different lengths to different symbols.

Example 1.2.3. Suppose we have the following sequence:

a·barrayaran·array·ran·far·faar·faaar·away

which is typical of all sequences generated by a source (· denotes a blank space). Notice that the
sequence is made up of eight different symbols. In order to represent eight symbols, we need to use
3 bits per symbol. Suppose instead we used the code shown in Table 1.1. Notice that we have assigned
a codeword with only a single bit to the symbol that occurs most often (a) and correspondingly longer
codewords to symbols that occur less often. If we substitute the codes for each symbol, we will use
106 bits to encode the entire sequence. As there are 42 symbols in the sequence, this works out to
approximately 2.52 bits per symbol. This means we have obtained a compression ratio of 1.16:1. We
will study how to use statistical redundancy of this sort in Chapters 3 and 4. �

When dealing with text, along with statistical redundancy, we also see redundancy in the form of
words that repeat often. We can take advantage of this form of redundancy by constructing a list of
these words and then representing them by their position in the list. This type of compression scheme
is called a dictionary compression scheme. We will study these schemes in Chapter 5.
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Often the structure or redundancy in the data becomes more evident when we look at groups of

symbols. We will look at compression schemes that take advantage of this in Chapters 4 and 10.

Finally, there will be situations in which it is easier to take advantage of the structure if we decom-

pose the data into a number of components. We can then study each component separately and use a

model appropriate to that component. We will look at such schemes in Chapters 13, 14, and 15.

There are a number of different ways to characterize data. Different characterizations will lead to

different compression schemes. We will study these compression schemes in the upcoming chapters

and use a number of examples that should help us understand the relationship between the characteri-

zation and the compression scheme.

With the increasing use of compression, there has also been an increasing need for standards.

Standards allow products developed by different vendors to communicate. Thus, we can compress

something with products from one vendor and reconstruct it using the products of a different vendor.

The different international standards organizations have responded to this need, and a number of stan-

dards for various compression applications have been approved. We will discuss these standards as

applications of the various compression techniques.

Finally, compression is still largely an art; and to gain proficiency in an art, you need to get a feel for

the process. To help, we have developed software implementations of most of the techniques discussed

in this book and have also provided the data sets used for developing the examples in this book. Details

on how to obtain these programs and data sets are provided in the Preface. You should use these

programs on your favorite data or on the data sets provided in order to understand some of the issues

involved in compression. We would also encourage you to write your own software implementations

of some of these techniques, as very often the best way to understand how an algorithm works is to

implement the algorithm.

1.3 SUMMARY
In this chapter, we have introduced the subject of data compression. We have provided some motivation

for why we need data compression and defined some of the terminology used in this book. Additional

terminology will be defined as needed. We have briefly introduced the two major types of compression

algorithms: lossless compression and lossy compression. Lossless compression is used for applications

that require an exact reconstruction of the original data, while lossy compression is used when the user

can tolerate some differences between the original and reconstructed representations of the data. An

important element in the design of data compression algorithms is the modeling of the data. We have

briefly looked at how modeling can help us in obtaining more compact representations of the data. We

have described some of the different ways we can view the data in order to model it. The more ways

we have of looking at the data, the more successful we will be in developing compression schemes that

take full advantage of the structures in the data.
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1.4 PROJECTS AND PROBLEMS
1. Use the compression utility on your computer to compress different files. Study the effect of the

original file size and type on the ratio of the compressed file size to the original file size.
2. Take a few paragraphs of text from a popular magazine and compress them by removing all words

that are not essential for comprehension. For example, in the sentence, “This is the dog that belongs
to my friend,” we can remove the words is, the, that, and to and still convey the same meaning. Let
the ratio of the words removed to the total number of words in the original text be the measure of
redundancy in the text. Repeat the experiment using paragraphs from a technical journal. Can you
make any quantitative statements about the redundancy in the text obtained from different sources?



2
CHAPTER

MATHEMATICAL PRELIMINARIES
FOR LOSSLESS COMPRESSION

2.1 OVERVIEW
The treatment of data compression in this book is not very mathematical. (For a more mathematical
treatment of some of the topics covered in this book, see [3–6].) However, we do need some mathemat-
ical preliminaries to appreciate the compression techniques we will discuss. Compression schemes can
be divided into two classes: lossy and lossless. Lossy compression schemes involve the loss of some
information and data that have been compressed using a lossy scheme generally cannot be recovered
exactly. Lossless schemes compress the data without loss of information, and the original data can be
recovered exactly from the compressed data. Notice that we do not use the words “data” and “infor-
mation” interchangeably. Lossless compression results in a compact representation of the information
contained in the data. In order to analyze and develop lossless compression algorithms we need a clear
unambiguous quantitative definition of information. This will give us some idea of how much compres-
sion can be obtained. If we have a probabilistic description of the data being compressed, Information
Theory can provide us with both an unambiguous quantitative definition of information and a bound on
how well we can compress the data. We will introduce some basic concepts from information theory
in the first part of this chapter. These concepts will help us provide a framework for the development
of lossless compression schemes.

Compression algorithms generally consist of two parts: modeling of the data to be compressed and
coding with respect to a model. We will review some common approaches to mathematical modeling
which we will use in later chapters when we study different compression algorithms. We will also
review some basic requirements for codes used in lossless compression. In particular, we will look at
a very useful class of codes called prefix codes and show that we can restrict our attention to just this
class of codes without losing out on compression performance.

Finally, we briefly look at an alternative approach to understanding information, namely algorithmic
information theory, and an alternative framework for compression. We have assumed some knowledge
of probability concepts (see Appendix A for a brief review of probability and random processes).

2.2 A BRIEF INTRODUCTION TO INFORMATION THEORY
Although the idea of a quantitative measure of information has been around for a while, the person
who pulled everything together into what is now called information theory was Claude Elwood Shan-
non [3], an electrical engineer and mathematician at Bell Labs. Shannon defined a quantity called
self-information. Suppose we have an event A, which is a set of outcomes of some random experiment.
If P(A) is the probability that the event A will occur, then the self-information associated with A is

Introduction to Data Compression. DOI: 10.1016/B978-0-12-809474-7.00002-1
Copyright © 2018 Elsevier Inc. All rights reserved.
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given by

i(A) = logb

1

P(A)
= − logb P (A). (2.1)

Note that we have not specified the base b of the log function. We will discuss the choice of the base
in more detail later in the chapter. The use of the logarithm to obtain a measure of information was
not an arbitrary choice as we shall see later in this chapter. But first let’s see if the use of a logarithm
in this context makes sense from an intuitive point of view. Recall that log(1) = 0, and − log(x) in-
creases as x decreases from one to zero. Therefore, if the probability of an event is low, the amount of
self-information associated with it is high; if the probability of an event is high, the information asso-
ciated with it is low. Even if we ignore the mathematical definition of information and simply use the
definition we use in everyday language, this makes some intuitive sense. The barking of a dog during
a burglary is a high-probability event and, therefore, does not contain too much information. However,
if the dog did not bark during a burglary, this is a low-probability event and contains a lot of infor-
mation. (Obviously, Sherlock Holmes understood information theory!)1 Although this equivalence of
the mathematical and semantic definitions of information holds true most of the time, it does not hold
all of the time. For example, a totally random string of letters will contain more information (in the
mathematical sense) than a well-thought-out treatise on information theory.

Another property of this mathematical definition of information that makes intuitive sense is that
the information obtained from the occurrence of two independent events is the sum of the information
obtained from the occurrence of the individual events. Suppose A and B are two independent events.
The self-information associated with the occurrence of both event A and event B is, by Eq. (2.1),

i(AB) = logb

1

P(AB)
.

As A and B are independent,

P(AB) = P(A)P (B)

and

i(AB) = logb

1

P(A)P (B)

= logb

1

P(A)
+ logb

1

P(B)

= i(A) + i(B).

The unit of information depends on the base of the log. If we use log base 2, the unit is bits; if we
use log base e, the unit is nats; and if we use log base 10, the unit is hartleys. In general, if we do not
explicitly specify the base of the log we will be assuming a base of 2.

1Silver Blaze by Arthur Conan Doyle.
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Because the logarithm base 2 probably does not appear on your calculator, let’s briefly review
logarithms. Recall that

logb x = a

means that

ba = x.

Therefore, if we want to take the log base 2 of x

log2 x = a ⇒ 2a = x,

we want to find the value of a. We can take the natural log (log base e) which we will write as ln, or
log base 10 of both sides (which do appear on your calculator). Then

ln(2a) = lnx ⇒ a ln 2 = lnx

and

a = lnx

ln 2
.

Example 2.2.1. Let H and T be the outcomes of flipping a coin. If the coin is fair, then

P(H) = P(T ) = 1

2

and

i(H) = i(T ) = 1 bit.

If the coin is not fair, then we would expect the information associated with each event to be different.
Suppose

P(H) = 1

8
, P (T ) = 7

8
.

Then

i(H) = 3 bits, i(T ) = 0.193 bits.

At least mathematically, the occurrence of a head conveys much more information than the occurrence
of a tail. As we shall see later, this has certain consequences for how the information conveyed by these
outcomes should be encoded. �

If we have a set of independent events Ai , which are sets of outcomes of some experiment S , such
that ⋃

Ai = S
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Table 2.1 The Most Probable Five Sequences of Lengths 1, 2, 3 and 10 From Peter Pan by J.M. Barrie,
The Communist Manifesto by K. Marx and F. Engels, and The Wealth of Nations by A. Smith. (All Text
Files Obtained From the Gutenberg Project)

n = 1 n = 2 n = 3 n = 10
· · · e · e · e · · th · th · th they ·were ·bourgeois theref ore,

e e e he th · t the the the .·darling · bourgeoisi ·which · the

t t t · t · t th he · he · he · ,” ·he · said ourgeoisie · the ·great

a o o th he he and ·of ·of · they ·were proletaria · the · same

h i a d · s · ·a nd · of · of · mrs. ·darli ebourgeoi heref ore, ·

where S is the sample space, then the average self-information associated with the random experiment
is given by

H =
∑

P(Ai)i(Ai) = −
∑

P(Ai) logb P (Ai).

This quantity is called the entropy associated with the experiment. One of the many contributions of
Shannon was that he showed that if the experiment is a source that puts out symbols Ai from a set A,
then the entropy is a measure of the average number of binary symbols needed to code the output of
the source. Shannon showed that the best that a lossless compression scheme can do is to encode the
output of a source with an average number of bits equal to the entropy of the source.

The set of symbols A is often called the alphabet for the source, and the symbols are referred
to as letters. In our definition of entropy we have assumed that a general source S with alphabet
A = {1,2, . . . ,m} that generates a sequence {X1,X2, . . . }, the elements in the sequence will be gen-
erated independently. Thus each letter appears as a surprise. In practice this is not necessarily the case
and there may be considerable dependence between letters. These dependencies will effect the en-
tropy of the source. In later sections we will look at specific ways to model these dependencies for
various sources of interest. However, in order to make a general statement about the effect of these
dependencies on the entropy of stationary sources we need a general approach which will capture all
dependencies. One way to capture dependencies is to look at the joint distributions of longer and longer
sequences generated by the source. Consider the n-length most likely sequences from three very dif-
ferent texts shown in Table 2.1 for n = 1,2,3,4. We can see that for n small, all we get is the inherent
structure of the English language. However, as we increase n to 10 we can identify the particular text
simply by looking at the five most probable sequences. That is, as we increase n we capture more and
more of the structure of the sequence. Define Gn as

Gn = −
i1=m∑
i1=1

i2=m∑
i2=1

· · ·
in=m∑
in=1

P(X1 = i1,X2 = i2, . . . ,Xn = in) logP(X1 = i1,X2 = i2, . . . ,Xn = in).

Then this quantity will denote the amount of information contained in n-tuples from the source. The
per-letter information can be obtained by normalizing Gn as

Hn = 1

n
Gn.
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FIGURE 2.1

Hn in bits per letter for n = 1, . . . ,12 for Wealth of Nations.

If we plot this quantity for n from 1 to 12 for the book Wealth of Nations we obtain the values shown
in Fig. 2.1. We can see that Hn is converging to a particular value. Shannon showed [3] that for a
stationary source, in the limit this value will converge to the entropy.

H(S) = lim
n→∞Hn. (2.2)

If each element in the sequence is independent and identically distributed (iid), then we can show that

Gn = −n

i1=m∑
i1=1

P(X1 = i1) logP(X1 = i1) (2.3)

and the equation for the entropy becomes

H(S) = −
∑

P(X1) logP(X1). (2.4)

For most sources, Eqs. (2.2) and (2.4) are not identical. If we need to distinguish between the two,
we will call the quantity computed in (2.4) the first-order entropy of the source, while the quantity in
(2.2) will be referred to as the entropy of the source.

In general, it is not possible to know the entropy for a physical source, so we have to estimate the
entropy. The estimate of the entropy depends on our assumptions about the structure of the source
sequence.
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Consider the following sequence:

1 2 3 2 3 4 5 4 5 6 7 8 9 8 9 10

Assuming the frequency of occurrence of each number is reflected accurately in the number of times it
appears in the sequence, we can estimate the probability of occurrence of each symbol as follows:

P(1) = P(6) = P(7) = P(10) = 1

16

P(2) = P(3) = P(4) = P(5) = P(8) = P(9) = 2

16
.

Assuming the sequence is iid, the entropy for this sequence is the same as the first-order entropy as
defined in (2.4). The entropy can then be calculated as

H = −
10∑
i=1

P(i) log2 P(i).

With our stated assumptions, the entropy for this source is 3.25 bits. This means that the best scheme
we could find for coding this sequence could only code it at 3.25 bits/sample.

However, if we assume that there was sample-to-sample correlation between the samples and we
remove the correlation by taking differences of neighboring sample values, we arrive at the residual
sequence

1 1 1 − 1 1 1 1 − 1 1 1 1 1 1 − 1 1 1

This sequence is constructed using only two values with probabilities: P(1) = 13
16 and P(−1) = 3

16 . The
entropy in this case is 0.70 bits per symbol. Of course, knowing only this sequence would not be enough
for the receiver to reconstruct the original sequence. The receiver must also know the process by which
this sequence was generated from the original sequence. The process depends on our assumptions
about the structure of the sequence. These assumptions are called the model for the sequence. In this
case, the model for the sequence is

xn = xn−1 + rn

where xn is the nth element of the original sequence and rn is the nth element of the residual sequence.
This model is called a static model because its parameters do not change with n. A model whose
parameters change or adapt with n to the changing characteristics of the data is called an adaptive
model.

Basically, we see that knowing something about the structure of the data can help to “reduce the
entropy.” We have put “reduce the entropy” in quotes because the entropy of the source is a measure of
the amount of information generated by the source. As long as the information generated by the source
is preserved (in whatever representation), the entropy remains the same. What we are reducing is our
estimate of the entropy. The “actual” structure of the data in practice is generally unknowable, but
anything we can learn about the data can help us to estimate the actual source entropy. Theoretically,
as seen in Eq. (2.2), we accomplish this in our definition of the entropy by picking larger and larger
blocks of data to calculate the probability over, letting the size of the block go to infinity.
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Consider the following contrived sequence:

1 2 1 2 3 3 3 3 1 2 3 3 3 3 1 2 3 3 1 2

Obviously, there is some structure to this data. However, if we look at it one symbol at a time, the
structure is difficult to extract. Consider the probabilities: P(1) = P(2) = 1

4 , and P(3) = 1
2 . The en-

tropy is 1.5 bits/symbol. This particular sequence consists of 20 symbols; therefore, the total number
of bits required to represent this sequence is 30. Now let’s take the same sequence and look at it in
blocks of two. Obviously, there are only two symbols, 1 2, and 3 3. The probabilities are P(1 2) = 1

2 ,
P(3 3) = 1

2 , and the entropy is 1 bit/symbol. As there are 10 such symbols in the sequence, we need a
total of 10 bits to represent the entire sequence—a reduction of a factor of three. The theory says we
can always extract the structure of the data by taking larger and larger block sizes; in practice, there
are limitations to this approach. To avoid these limitations, we try to obtain an accurate model for the
data and code the source with respect to the model. In Section 2.3, we describe some of the models
commonly used in lossless compression algorithms. But before we do that, let’s make a slight detour
and see a more rigorous development of the expression for average information. While the explanation
is interesting, it is not really necessary for understanding much of what we will study in this book and
can be skipped.

2.2.1 DERIVATION OF AVERAGE INFORMATION �
We start with the properties we want in our measure of average information. We will then show that
requiring these properties in the information measure leads inexorably to the particular definition of
average information, or entropy, that we have provided earlier.

Given a set of independent events A1,A2, . . . ,An with probability pi = P(Ai), we desire the fol-
lowing properties in the measure of average information H :

1. We want H to be a continuous function of the probabilities pi . That is, a small change in pi should
only cause a small change in the average information.

2. If all events are equally likely, that is, pi = 1/n for all i, then H should be a monotonically increas-
ing function of n. The more possible outcomes there are, the more information should be contained
in the occurrence of any particular outcome.

3. Suppose we divide the possible outcomes into a number of groups. We indicate the occurrence of a
particular event by first indicating the group it belongs to, then indicating which particular member
of the group it is. Thus, we get some information first by knowing which group the event belongs
to; and then we get additional information by learning which particular event (from the events in
the group) has occurred. The information associated with indicating the outcome in multiple stages
should not be any different than the information associated with indicating the outcome in a single
stage.
For example, suppose we have an experiment with three outcomes, A1, A2, and A3, with corre-
sponding probabilities, p1, p2, and p3. The average information associated with this experiment is
simply a function of the probabilities:

H = H(p1,p2,p3).




